

CCAFS – MOT: a screening tool

Dali Nayak, Jon Hillier, Diana Feliciano & Sylvia Vetter

University of Aberdeen

Peru 03.12.2014

University of Aberdeen, Scotland, UK

Important to notice...

- Partnership between the CGIAR program on Climate Change, Agriculture and Food Security (CCAFS) & University of Aberdeen.
- This tool is still being developed;
- We want to take your suggestions into account to improve the tool.
- We aim at helping decision-makers to understand the sources of GHG emissions, mitigation options and their potentials.

Example: Rice production in Indonesia

Country Indonesia
Climate Tropical moist

Asian rice climate | Warm humid tropics

Soil texture Medium

SOC 2 Soil pH 5 Bulk density 1

Crop duration 100 days Yield 5136 kg.ha⁻¹

Water regime Multiple drainage

Pre-season water

regime Short-drainage

Ammonium nitrate – 69 kg;

Triple super phosphate –

Fertilisers 100 kg;

Potassium sulphate - 48 kg;

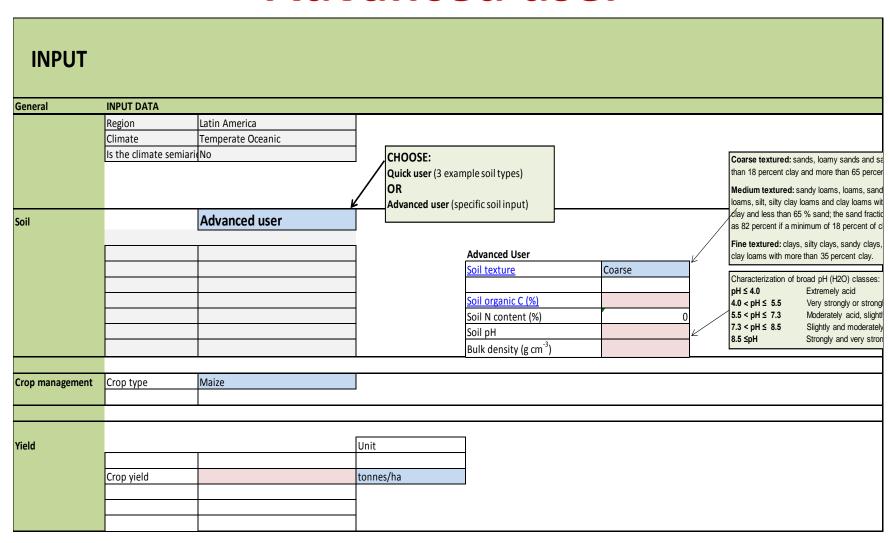
Urea - 351 kg.

Broadcast

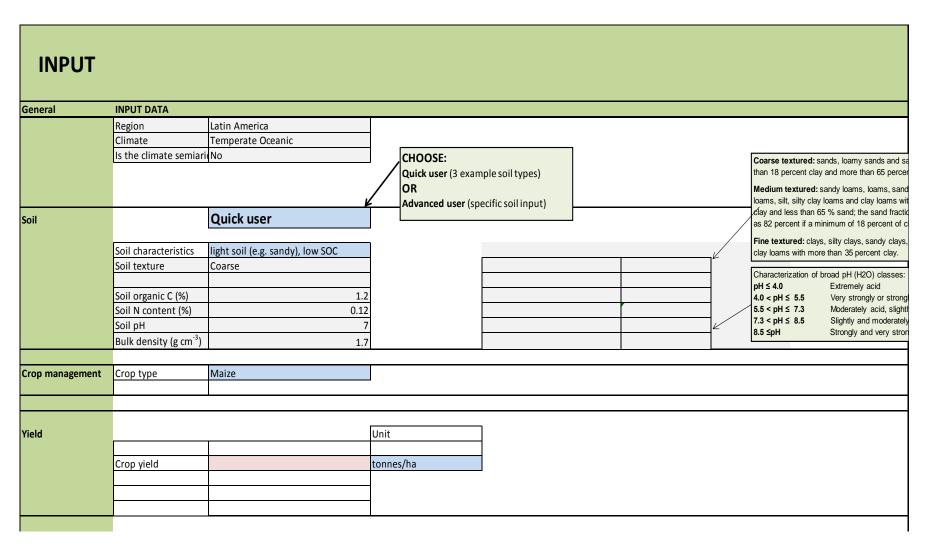
Application

method

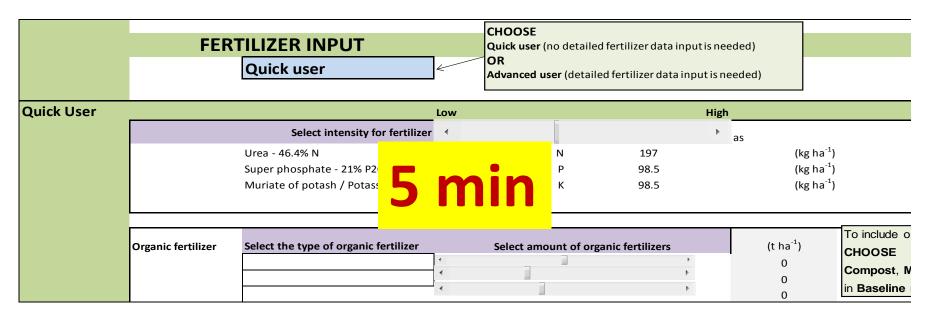
Crop residue Not incorporated Tillage Conventional tillage


Cover crop Not added

Compost Incorporated (300 kg)
Manure Incorporated (150 kg)

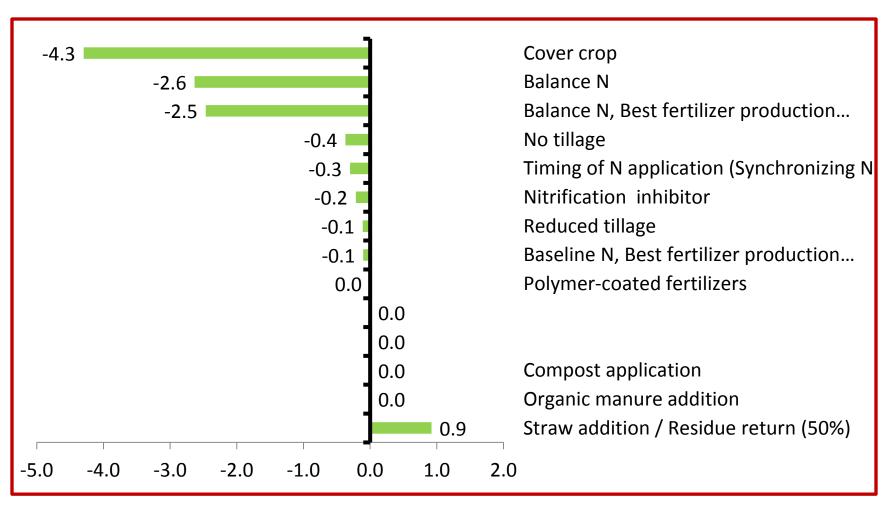

Rice produccion in Indonesia

(Advanced option)


Advanced user

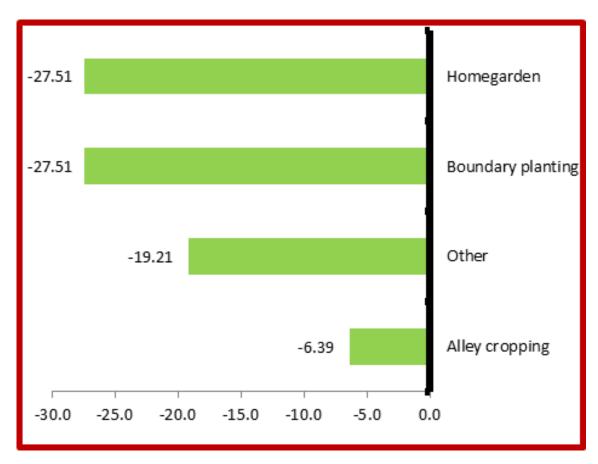
Quick user

Fertilizer input



Advanced user		For advanced user please fill in the section below					
						Application	
Synthetic Fertilizer	Synthetic Fertilizer	Fertilizer Type	Nutrient or Product	Amount	Unit (Amount)	Method	
	Fertilizer 1	Anhydrous ammonia - 82% N	N	65	kg/ha	Apply in solution	
	Fertilizer 2	Triple super phosphate - 48% P2O5	р	122	kg/ha	Broadcast	
	Fertilizer 3	Muriate of potash / Po		122	kg/ha	Broadcast	
	Fertilizer 4	None			kg/ha	Select	
	Fertilizer 5	None	min		kg/ha	Select	
	Fertilizer 6	None			kg/ha	Select	
	Fertilizer 7	None			kg/ha	Select	
	Fertilizer 8	None	N		kg/ha	Select	
Organic Fertilizer	Organic Amendment	Туре	Nutrient or Product	Amount	Unit (Amount)		
	Organic fertilizer 1	None	Product	6	tonnes/ha	Select	
	Organic fertilizer 2	None	Product	50	kg/ha	Select	
	Organic fertilizer 3	None	Product	50	kg/ha	Select	

Greenhouse gas emissions


RESULTS					
current	GHG emission per hectare	4446	kg CO₂eq ha ⁻¹		
	GHG per yield	0.035	kg CO₂eq kg ⁻¹		

Mitigation options

1000 kg CO₂eq ha⁻¹.yr⁻¹

Agroforestry systems

Agroforestry is the mixture of trees and crops in cultivated parcels. It may be a key option for the future of modern agriculture.

1000 kg CO₂eq ha⁻¹.yr⁻¹

What distinguishes this tool?

- It estimates GHG emissions in several crops (34), rice and livestock X;
- It estimates the mitigation potential of several mitigation options **v**;
- It ranks the mitigation options according to their mitigation potential
 v;
- It joins several empirical models to estimate GHG emissions **V** .

General characteristics of the screening tool:

- Excel-based tool;
- Easy and quick to fill (5-10 minutes);
- Easy to get the results.

Empirical models in the tool

Examples:

- Rice: Yan et al. (2005)
- Other crops: Stehfest and Bouwman (2006); Smith et al. (1997); Zhang et al. (2013); Brentrup & Palliere (2014)
- Livestock: Herrero et al.(2013)

Nitrous oxide emissions (e.g. maize)

Stehfest & Bouwman (2006):

$$Log(Nemission) = A +$$

Textura del suelo	Densidad aparente (da) g/cm ³		
Arenoso	1.65		
Franco-arenoso	1.50		
Franco	1.40		
Franco-arcilloso	1.35		
Franco-limoso	1.30		
Arcilloso	1.25		

Methane emissions in paddy rice

Yan et al. 2006

$$\ln(flux) = constant + a \times \ln(SOC) + pH_m + PWi + WTj + CL_k + OM_l \times \ln(1 + AOM_l)$$

- ·SOC
- •Soil pH
- •Climate
- •Preseason water regime
- •Water regime of the growing season
- •Type and amount of organic fertiliser

Mitigacion options

 We chose mitigation options that do not affect crop production capacity. Examples:

Summary

- An Excel-based tool can be used in any pc;
- Uses empirical models different from IPCC factors;
- Provides information about mitigation options and their mitigation potential;
- Maximum time required is 10 min;
- Advanced and quick user Accommodates a range of users.
- It is intended to help decision-makers.

Let's try it

Acknowledgements

 This work was undertaken as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is a strategic partnership of **CGIAR** and **Future Earth**. This research was carried out with funding by the European Union (EU) and with technical support from the International Fund for Agricultural Development (IFAD). The views expressed in the document cannot be taken to reflect the official opinions of CGIAR, Future Earth, or donors.

Many thanks & Questions!